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Abstract

In this paper we present results demonstrating the utility of computational methods to numerically simulate and
visualize hydrodynamic dispersion in random porous media. The role of Peclet number in the spread of a dye
through porous media is illustrated. From examination of concentration profiles, effective diffusion coefficients
were numerically determined for different Peclet numbers. In contrast to the case of fluid-driven dispersion, we
discuss the spread of a dilute concentration of ions driven by an electric field. We also consider a simple model of
size exclusion chromatography where materials that advect and diffuse through pore space also diffuse through the

solid matrix.

1. Introduction

The flow and spread of fluids through random
porous media such as soils, bead packings,
ceramics and concrete plays an important role in
a wide variety of environmental and technologi-
cal processes [1,2,4]. Examples include: the
spreading and clean up of underground hazard-
ous wastes, oil recovery, separation processes
such as chromatography and catalysis, and the
degradation of building materials. While the
study of miscible flow in porous media has been
the subject of considerable research, it is difficult
to obtain exact solutions of the Navier-Stokes
and hydrodynamic dispersion equations for the
case of flow in random porous media. However,
recent advances in computers have made it
possible to numerically simulate fluid flow in
complex geometries. Many factors which control
the invasion of fluids such as viscosity, surface
tension forces, the structure of the porous
medium, and the external driving force which
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displaces the fluids can be directly incorporated
into computations of fluid dynamics [1-13].

Suppose a porous medium is saturated with a
Newtonian fluid. A pressure gradient is applied
across the medium maintaining steady flow. The
fluid flow is assumed to be in the limit of low
Reynolds number. If we now introduce a misc-
ible dye at the side from which the fluid is
entering, the dispersion or spread of the dye is
locally described by the advection—diffusion
equation [3-4]
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Here c is the concentration of the dye, v is the
local fluid velocity, and D_ is the molecular
diffusion constant. A dimensionless number
which is useful to characterize the competition
between diffusion and advection in the spread of
a dye is the Peclet number [3] Pe= (v)I/D_
where (v) is the average fluid velocity and ! is a
length scale which depends on the pore geome-
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try. When Pe is small, the diffusion process
dominates the spread of the dye; at large Pe,
advection dominates.

At length scales much larger than the typical
pore size, hydrodynamic dispersion is generally
described by the macroscopic advection-diffu-
sion equation (2D) [3]
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where C is the macroscopic mean concentration,
D, and D; are the longitudinal and transverse
dispersion coefficients respectively, V is the
macroscopic mean velocity, and x is in the
direction of the mean flow. The macroscopic
advection-diffusion equation is valid when the
squared width of the dispersion front scales
linearly with time. When the squared width
scales nonlinearly, dispersion is called anomalous
[16-18].

Previous theoretical work [14,16~18] con-
cerning scaling in hydrodynamic dispersion
through a disordered porous medium has largely
focused on the understanding of anomalous
dispersion and the prediction of D; and D, as a
function of Pe and pore geometry. Here, consid-
erable progress [14] has been made by applying:
percolation concepts [14] to dispersion in ran-
dom network models of porous media, mutliple
scale expansions [17] (or homogenization) or by
simulation of dispersion [17], at the pore scale
via the convected Brownian motion of particles.

In this paper we present results demonstrating
the utility of computational methods to numeri-
cally simulate and visualize hydrodynamic dis-
persion in random porous media. The role of
Peclet number in the spread of a dye through
porous media is illustrated. From examination of
concentration profiles, effective diffusion coeffi-
cients were numerically determined for different
Peclet number. We also consider a simple simula-
tion model of size exclusion chromatography
where an advecting dye is allowed to diffuse
through the solid matrix as well as through the
pore space. In this model, it is assumed that
there are two dispersing materials made of, for

instance, two different sized polymers. By not
allowing one material (composed of the larger of
the two polymers) to diffuse in the solid region in
one simulation and allowing the other material
(composed of the smaller of the two polymers) to
diffuse in the solid region in a second simulation
it is possible to compare how these different
materials are transported in the same porous
medium.

Finally, since it is quite common to draw an
analogy between fluid flow [19,20] and flow of
electrical current, results from dispersion due to
an electrically driven dilute concentration of ions
are given for comparison to hydrodynamic dis-
persion. We show that there is a dramatic differ-
ence between equal concentration contours of
ions driven by an electric field and those driven
hydrodynamically.

Section 2 summarizes the numerical tech-
niques and describes the modeled porous media
studied. Section 3 presents results of simulations.
Finally, Section 4 further discusses the results
and presents conclusions.

2. Numerical calculations
2.1. Models of porous media

This paper will mostly focus on dispersion
through two-dimensional porous media con-
structed by randomly placing digitized discs on a
lattice such that they do not overlap. The discs
have diameter 13, in units of lattice spacing, and
the number of packed discs is such that the
porosity, ¢ =0.8. Typical system size was 300
300 lattice spacings. For a qualitative comparison
of hydrodynamic dispersion in different porous
media, cases where the porosity is very high
(dilute concentration of discs) and where the
porosity is near a percolation threshold are also
considered. In the former case the porous
medium is constructed with nonoverlapping discs
having diameter 13 but with ¢ =0.95 and in the
latter, the porous medium is constructed by
randomly overlapping discs of diameter 23 such
that ¢ =0.4.
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2.2. Summary of numerical methods

Fluid flow

In the limit of slow incompressible flow,
steady-state fluid flow is described by the linear
Stokes [3] equations

nV*u(r) =Vp(r) (3a)
V-u(r)=0, (3b)

where v and p are, respectively, the local ve-
locity and pressure fields, 7 is the fluid viscosity
and 7 is the location. The fluid velocity must
vanish at pore—solid interfaces and a pressure
difference is applied at the inlet and outlet faces.
To numerically solve the Stokes equations, we
use a finite-difference scheme in conjunction
with the artificial compressibility relaxation algo-
rithm [19,21]. The pore space is discretized into
a marker-and-cell (MAC) mesh [21], where
pressures are defined at the nodes and fluid
velocity components are defined along the center
of bonds connecting nodes. Each pixel, a unit
square representing either pore or solid, is cen-
tered on a node. Near the pore—solid interface,
non-centered difference equations are used to
improve the accuracy of the solution and to force
the fluid velocities to zero at the true pore—solid
interface, which is half way in between the
nodes. As a result, velocity profiles across pixels
are accurate to at least second order”.

2.3. Advection—diffusion

For finite Pe, the advection—diffusion equation
was solved numerically using finite difference
methods [21,22]. The local concentration was
specified on the nodes of the same MAC mesh
used in the fluid flow simulation. An advantage
of using the MAC mesh is that it naturally forces
conservation of matter throughout the porous

® Suppose that, within a given pixel, we were to expand the
exact solutions of the Stokes equations v(r)=uv(x,y,z) as a
Taylor series in x,y. The use of non-centered difference
equations guarantees that our solutions properly represent
the first three terms of this expansion (i.e., that the errors
are of order x* or x%y etc.).

medium. To improve numerical accuracy and
prevent oscillations in concentration which may
appear due to steep gradients in concentration,
we adopted the Barton [23-25] scheme in solving
the advection—diffusion equation. Periodic
boundary conditions were imposed along the
sides parallel to the main flow direction. At the
outlet the boundary condition dc/dx =0 was
maintained. Initially, the dye concentration is
zero throughout the porous medium. A fixed dye
concentration is introduced at the inlet and
spreads according to Eq. 1 until the pore space is
nearly saturated with dye.

In the case where we allow dispersion through
the solid matrix as well as through the pore space
we simply required that the mass. current be
continuous at the pore—solid interface. This was
guaranteed by imposing the following boundary
condition:

D, aC/ox|, =D, aC/ x|, (4)

where D, and D, are the microscopic diffusion
coefficients in the pore and solid space respec-
tively, and the derivatives are evaluated in the
respective pore and solid regions near the pore—
solid interface [15].

3. Results

3.1. Pattern formation as a function of Peclet
number

Fig. 1 shows dispersion patterns formed by an
invading dye for the case where ¢ = 0.8 and
Pe=0, 1, and 80 (Fig. 1a,b,c, respectively).
Here the length scale in Pe is the disc radius.
Clearly, at the lowest Pe, diffusion dominates
pattern formation. Contours of equal concen-
tration generally form a single-valued function
with respect to a line drawn along the inlet. The
small local variation in concentration profiles is
due to the presence of impenetrable discs and
relatively small fluctuations in the velocity fields.
As Pe increases, advection begins to dominate
and fingers form (or channeling develops) as the
dye advances through channels where the fluid
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Fig. 1. Panels a—c show snapshots of pattern formation in
hydrodynamic dispersion for Pe =0, 1, and 80, respectively.
Dye concentration scales such that white corresponds to ¢ =1
and black to ¢ =0. The porous medium was initially satu-
rated with a black fluid. A white diffusing dye then enters
from the top. While our simulations treat the concentration
as a continuum, it is depicted here at threshold steps to
reveal contours of equal concentration.

velocity is greatest. Slow flow velocity regions
take much longer to invade because the dye
enters primarily by diffusion. At the highest Pe,
well defined fingers form as the dye follows the
winding tortuous path of the fluid. Experimental
studies [29] of hydrodynamic dispersion in et-
ched networks are in qualitative agreement with
our simulations.

In Fig. 2 we show different time-concentra-
tion profiles for the Pe =0 case. Here the con-
centration is averaged over strips in the direction
transverse to the ingress. The concentration is
normalized by the porosity in each strip so that
C(x)=1 when the pore space is completely
saturated. Note that when Pe =0, the macro-
scopic diffusion coefficient D, may be obtained
from the Nernst—-Einstein relation:
pre ©)
D m ¢Gf
where given a porous medium that is saturated
with a conducting fluid, o; is the conductivity of
the fluid, oy, is the bulk conductivity of the entire
medium and we assume the solid region has zero
conductance. In Fig. 2 we also show the solution
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Fig. 2. Concentration profiles at different times for Pe =0.
The dashed line is from the solution of Eq. 2 using the
macroscopic diffusion coefficient predicted by the Nernst-
Einstein relation and the independently computed conduc-
tivity.
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of Eq. 2 in one dimension where the longitudinal

diffusion coefficient is set equal to D,. Here D,

was obtained from the Nernst-Einstein relation

after the conductivity of the system was indepen-

dently determined (for more details concerning

the determination of conductivity in random
porous media see Ref. [19]). For the porous
medium studied we found D, /D, =0.75. Clearly
our simulations are consistent with the prediction
of the Nernst—Einstein relation.

Fig. 3 shows concentration profiles from the
case where Pe = 1. Also included are solutions of
Eq. 2 where the velocity V= (V) is only aver-
aged over the pore space in order to correctly
account for the motion of the dye which is
limited to the pore space. To fit data to solutions
of Eq. 2 we used the value D, /D_ =2.

At Pe =80, the concentration profiles were
much more difficult to fit to solutions of Eq. 2.
This is a result of the sensitivity of the invasion
pattern to the arrangement of the discs, long
range correlations in the velocity fields as well as
the existence of relatively large regions where
the velocity fields are small compared to the
faster moving channels. While averaging over
enough samples (or a larger system size) would
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X

Fig. 3. Concentration profiles for Pe =~ 1. Also shown are fits
from the solution of Eq. 2.

reduce this effect, it is necessary that the disper-
sion take place over a long enough time for the
dye to properly sample the pore space in order
to accurately determine D,. From long time
limits of the concentration profile and also from
the examination of larger system sizes (300 X 900
and 1024 x 1024) we found that D,/D_ =200.
Further studies are needed to more accurately
determine D,/D, for this class of porous
medium at high Pe. Other methods, where the
convection of Brownian particles is simulated to
study dispersion, may be more appropriate for
the high Pe regime [4].

3.2. Dispersion in other model porous media

As a qualitative illustration of the important
role pore structure plays in dispersion, two
examples of dispersion are shown, to contrast
with the previous simulations. Fig. 4a shows
dispersion in the overlapping disc model where
¢ = 0.4. For this model, we are near the percola-
tion threshold for the discs, i.e. the overlapping
discs form a connected cluster that spans across
the system. In this regime the size of the clusters
establishes the length scale (as opposed to the
radius of the discs) which would appropriately
define Pe. Also note, near the percolation thres-
hold, the fewer pathways that span the system
make a significant contribution to flow. Large
pockets or regions where there is negligible fluid
flow take very long times to saturate. The dye
mainly enters these pockets by diffusing through
a tortuous path. In this regime, anomalous
dispersion [30] is expected to take place.

Results from the opposite extreme, of disper-
sion in highly porous media, are given for the
case of ¢ =0.95 and Pe =25 in Fig. 4b. Clearly
the flow fields are correlated over very large
distances compared to the size of the disc. This
leads to the formation of very long and broad
fingers. It is surprising, even in this very dilute
case, how nonuniform the dispersion front is.
Again, simple use of disc size is not sufficient to
define Peclet numbcr. Instead, the spacing be-
tween discs or the distance the velocity field is
correlated, obtained from two-point fluid ve-
locity correlations [19], may be more suitable.
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Fig. 4. Examples of dispersion through porous media in the
limit where the pore space is near its percolation threshold
(panel a) and in the opposite limit where the solid fraction is
only 5 percent (panel b).

3.3. Dispersion in both pore and solid regions

Fig. 5 compares pattern formation resulting
from hydrodynamic dispersion in pore space only
(a) and where diffusion is included in the solid
regions (b). The fluid velocity is the same in both
cases and the images represent a snapshot of the
dye pattern after identical time periods. The

Fig. 5. Comparison of dispersion in the case where the dye is
excluded from entering the solid matrix (a) and where
diffusion also takes place in the solid (b). In (a), Pe=20.

Peclet number is approximately 20 and the
microscopic diffusion coefficient of the ingressing
material is a factor of two higher in the pore
space than that in the solid region. Clearly, when
diffusion is permitted in the solid region the dye
does not advance as quickly as when it is ex-
cluded from the solid region. In this case, the
dye is temporarily diverted from the faster flow
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Fig. 6. Concentration profiles of the invasion patterns shown
in Fig. 5. The upper solid line is the concentration profile for
Fig. 5a and the long dashed line is a fit to that concentration
profile using Eq. 2. The lower solid line is the concentration
profile associated with Fig. 5b where only the pore space is
-considered. The short dashed line is the concentration profile
for the entire system (pore and solid) in Fig. 5b.

regions of the fluid-saturated pore space and
subsequently falls behind the dye that is ex-
cluded from the solid. Such a process is similar
to that found in size exclusion chromatography.

Fig. 6 compares the concentration profiles for
the previous Fig. 5. Again it is clear that the
solid exclusion case permits a greater flux of
material. In the case where diffusion is allowed
in the solid regions there is little difference in the
concentration profiles when averaging the con-
centration over the pore space only, or whether
averaging over the entire sample, including solid
regions. This is largely due to the concentration
being continuous throughout the entire medium
and to there not being a great difference in the
diffusion coefficients associated with the solid
and pore regions.

3.4. Electrically driven concentration

Finally, a comparison is made between the
previous dispersion pattern due to fluid flow
(Fig. 5a) and the dispersion of a dilute ion
concentration driven by an applied electric field

Iveg ™~ v a v

Fig. 7. Dispersion of a dilute concentration of ions where
Pe = 25. Note the dramatic difference in the invasion pattern
as compared to Fig. 5a.

(Fig. 7). Here, the same pore space used in Fig.
5a is filled with a conducting fluid. The discs are
assumed to be insulating and uncharged [27]. A
potential gradient is applied across the system
and the Laplace equation is numerically solved
to determine the electric potential everywhere.
The local electric fields E are obtained from the
negative gradient of the potential. Next, a dilute
concentration of ions is introduced at the inlet.
The ion velocity is given by v; = vzFE where v is
the ion mobility, z is the ion charge number, and
F is Faraday’s constant [28]. The dispersion of
the ions is then described by Eq. 1 where ¢
represents the ion concentration and v, is the ion
velocity as given above. We define an effective
Pe for the electrically driven case by using the
ion velocity in the usual definition of Peclet
number.

Clearly, the patterns formed by the two driv-
ing forces, for similar Pe, are quite different. It is
not unusual to find textbooks [26] that explain
fluid flow in terms of electric current and vice
versa and that explain Darcy’s law as a type of
Ohm’s law for fluid flow. However, there are
several important differences, at the microscopic
scale, between the electric fields and flow fields
in these simulations.
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Consider first the fluid case. Note that the fluid
velocity is zero along the pove—solid boundary.
In addition, the solution of Stoke’s equation will
typically produce a velocity profile, between
neighboring discs, that is roughly parabolic.
Therefore, there is very little flow in regions only
accessible to pores with narrow necks and most
of the fluid flow is through the set of largest
pores that form a connected path across the
porous medium [19]. As a result, a dispersing
dye in this porous medium may form long fingers
as it moves through the faster channels, while
only slowly entering regions accessible through
narrow necks.

In contrast to fluid flow, the calculated electric
fields need be zero only normal to the solid
surface. Also, the solution of Laplace’s equation
results in an approximately constant electric field
between discs. Thus, in the electrically driven
case, there is significant movement of ions
through both the narrow and wide pores such
that no portion of the front greatly advances
relative to another. As a result there is a more
uniform displacement of ions then in the equiva-
lent fiuid case.

4. Summary

In summary, we have demonstrated the utility
of real-space numerical simulation of hydro-
dynamic dispersion in random porous media.
The study of pore scale process can lead to a
clearer understanding of a variety of larger scale
phenomena including the determination of
macroscopic diffusion coefficients, channeling
and the separation of materials as a function of
pore structure and Peclet number. Although the
results presented in this paper concern hydro-
dynamic dispersion in model porous media, the
methods used here are easily extendable to more
realistic pore structures and many other complex
processes including surface reactions. Further-
more, we have carried out similar studies in
three dimensions, results of which will be pre-
sented in a future publication.
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local concentration

macroscopically averaged concentration
molecular diffusion constant
macroscopic diffusion coefficient
molecular diffusion constant in pore space
molecular diffusion constant in solid region
longitudinal dispersion coefficient
transverse dispersion coefficient
electric field

Faraday’s constant

pressure

Peclet number

fluid velocity

ion velocity

volume averaged velocity

ion charge number

fluid viscosity

ion mobility

porosity

bulk conductivity

conductivity of fluid
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